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Summary 

A theory to explain the initial stages of unsteady separation has been proposed by Van 

Domnielen ,pi Cowley (1989). In the present paper, this theory is verified for the separation 

process tha t  occurs at the equatorial plane of a sphere or a spheroid which is impulsively 

spun around an axis of symmetry. A Lagrangian numerical scheme is developed which 

gives results in good agreement with Eulerian computations, but which is significantly 

morc accurate. This increased accuracy, and a simpler structure to the solution, also 

allows verification of the Eulerian structure, including the presence of logarithmic terms. 

Further. while the Eulerian computations broke down at the first occurrence of separation, 

i t  is f m n d  that the Lagrangian computation can be continued. It is argued that this 

separated solution does provide useful insight into the further evolution of the separated 

flow. A remarkable conclusion is that an unseparated vorticity layer at the wall, a familiar 

feature in unsteady separation processes, disappears in finite time. 

J 

1. Introduction 

In part 1, Van Dommelen k Cowley (1989) proposed a Lagrangian description for 

unsteady separation under a wide range of conditions. This theory has been verified in a 

number of two-dimensional unsteady boundary-layer computations, the f i s t  being the one 

by Van Dommelen $2 Shen (1980,1982) for a circular cylinder which is impulsively set into 

motion in the direction normal to its axis. Yet it seems somewhat unsatisfactory tha t  the 

verification of basic aspects of the theory should depend solely on two-dimensional unsteady 

computations, since by necessity their resolution is much lower and their convergence 

questions more complex than one-dimensional computations. This motivated the present 

examination of the separation process which occurs at, the equatorial plane of a sphere 

which is impulsively rotated. 
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This separation process was first described by Banks Rt Zaturska (1979), who proposed 

fin analyt ical  description in the fiwm o f  a power series in time. However, Simpson (p: 

Stewartson (1982) argued that, there would also be higher order logarithmic terms in the 

expansion. (Interestingly, Banks & Zaturska (1981) discovered the presence of logarithmic 

terms in a flow previously studied by Bodonyi & Stewartson (19177), cf. part 1). The 

physical separation process was explained in Lagrangian terms by Van Dommelen (1981), 

who proposed that separation would cause the boundary layer to divide into an unseparated 

vortex layer at the wall and a separated one above it. His proposals agree with the Eulerian 

expansions of Simpson & Stewartson (1982). While d these studies were only concerned 

with the flow in the equatorial plane, numerical solutions for the complete boundary-layer 

flow were given by Dennis & Ingham (19179) and Van Dommelen (1986). Navier-Stokes 

solutions were presented by Dennis & Duck (1988). 

Except as an example of a basic unsteady separation process, the spinning sphere is 

also of interest because of its relation to problems in geology and meteorology. It further 

turns out that the results apply equally well to axially symmetric bodies of general shape, 

provided that the body is symmetric about the equatorial plane (cf. part 1 and Banks & 

Zaturska 1979). 

The structure proposed by Van Dommelen & Cowley (1989) is verified in sections 

3 and 4. For this purpose, in section 2 a Lagrangian numerical procedure is described. 

This procedure is found to be more accurate than the Eulerian Crank-Nicolson scheme of 

Banks & Zaturska (1979) and the Eulerian box scheme of Simpson & Stewartson (1982). 

It allow~s a precise verification of the presence of logarithmic terms in the expansions 

as proposed by Simpson & Stewartson (1982) (section 5 ) .  Unlike the Eulerian schemes, 

the Lagrangian computation can be continued beyond the first occurrence of separation 

without apparent difficulties. The physical meaning of such a solution is not immediately 

clear, since interaction effects invalidate the equations in the immediate vicinity of the 

equatorial plane. Yet, in section 6 we will argue that our solution can be extrapolated 

away from the equatorial plane to where the governing equations are still correct. Thus 

our solution may provide an interesting first glimpse of the continued evolution of an 

unsteady separated flow. One remarkable result is that the unseparated vortex layer at 

the wall disappears quickly. In section 17 an analytical description for this process is derived 
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which is in good agreement with the numerical data. 

2. Lagrangian Formulation And Numerical Met hod 

The flow about the spinning sphere is most easily described in a polar coordinate 

system where x is the polar angle measured from the axis of rotation and y the distance 

from the wall, scaled to eliminate the coefficient of viscosity. The corresponding velocity 

components are u and v, and w denotes the velocity in the azimuthal direction. The radius 

of the sphere and the inverse of the angular velocity axe scaled to unit values. 

Van Dommelen & Cowley (1989) further introduce Lagrangian coordinates < and 7 

attached to the fluid. By definition, these are taken equal to the values of x and y at the 

time, t = 0, that the sphere initially starts to spin. In terms of c and 7, the boundary-layer 

momentum equations, obtained by a series expansion in ( at the equator, are: 

where the subscript comma denotes differentiation with respect to the subsequent sub- 

scripts, the dot denotes differentiation with respect to time, and x,t ,  u,,t, and w are eval- 

uated at the meridional plane ( = 7r/2, so that they depend on 7 and t only. The first 

equation, (lu), is the (-derivative of u = x which defines the polar flow velocity as the 

time derivative of the polar position, ( l b )  is the azimuthal momentum equation as given 

by Van Dommelen & Cowley (1989), while (IC) is the (-derivative of the polar momentum 

equation. 

The initial and boundary conditions are: 

w(7,O) = 0 if 77 # 0 , (If 1 

X,((O,t) = 1 , U,((O.  tq = 0 , l \ . ( O , t )  = 1 . ( I91 h, 

X,((oo,t) = 1 , U,((oo,t) = 0 , w(oo,t) = 0 . ( l j l  Jc, 1 )  
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The advantage of Lagrangian coordinates arises from the fact that the particle distance 

from t h e  wall, y, occiirs only in the contiiiiiity equation (cf. part 1): 

This equation needs to be integrated only at times at which results are desired; it does 

not affect the numerical solution of (la) through (12). It also turns out that the continuity 

equation is the first one to become singular, so that numerical difficulties do not arise in 

the integration of (la) through (12). 

The present numerical integration follows the general lines of the procedure of Van 

Dommelen 8i Shen (1980). For example, to achieve an effective distribution of mesh points 

across the boundary layer, an arctangent mapping was used, and the singularity at the 

impulsive start was eliminated by a further coordinate transformation. The Jacobian (2) 

was integrated using quadratic interpolation for x,€. 

T h e  Lagrangian equations (1) were discretisized by means of Crank-Nicolson central 

finite differences. The resulting implicit finite difference equations were solved iteratively 

for x , t ,  w, and u,e respectively by means of the tridiagonal algorithm. The iterations 

were continued until the error in the finite difference equivalent of ( la )  through (IC) was 

less than 3 this avoids the possible problems of a termination criterion based on 

the difference between iterates. To eliminate possible round-off errors, l i  digit numerical 

precision was used throughout. 

Thus the major source of numerical inaccuracy should be the truncation error. To 
take account of this error, computations were performed at the four meshes listed in table 

1, which compare favorably to the meshes used in the Eulerian computations. 

In contrast to the Eulerian calculations, no Richardson extrapolation was used. But 

if desired, it may be noted that the Lagrangian solution should provide a much better 

basis for repeated Richardson extrapolation than the Eulerian schemes. The reason is the 

smoothness of the Lagrangian solution discussed in the next section. 

3. Separation Structure 

In solving the problem specified by eqiiations ( I ) .  ( 2 )  in Eiilerian coordinates. Banks 

K- Zaturska (1979) discovered that the boundary-layer thickness becomes infinite at some 

finite time ts.  According to Sears & Telionis (1975), such singularities in a classical 
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boundary-layer solution indicate separation. The singularity should be understood to 

mmn t h a t  ihc local motinn away from t h  wall hccomea tno strnng to hc clwc.riher1 wifh 

boundary-layer scalings. As an example, Elliott, Cowley & Smith (1983) show that the 

interactive stage of unsteady two-dimensional separation occurs at a boundary-layer thick- 

ness O( Re-’/I1), rather than the classical O(Re-’ / ’ ) .  
The separation processes proposed by Van Dommelen & Cowley (1989) are character- 

ized by non-singular solutions x,t ,  u, t ,  and w to the Lagrangian boundary-layer equations 

(1). Singular behaviour should occur only in the continuity equation (2), caused by vanish- 

ing of x,t inside the boundary layer. Such behavior results in infinite values of the particle 

position y, leading to the infinite boundary-layer thickness observed in the Eulerian com- 

putations. 

The numerical results do show that the Lagrangian x,t ,  u,t and w profiles remain 

regular, and that x,t becomes zero. The f i s t  zero occurs at a point S located at 7s = 

0.97188 at time ts = 4.575632. This time is in excellent agreement with the time that 

the Eulerian solution becomes singular, 4.5758 according to Banks & Zaturska (1979) or 

4.57446 according to Simpson & Stewartson (1982). (Values of the computational quantity 

used by Simpson PC Stewartson to find the separation time are listed in table 2). Ye1 unlike 

the Eulerian separation profiles, the Lagrangian profiles of figure 1 do not show any sign 

of singular behaviour. 

The vanishing of x,t leads to a singular solution to the continuity equation (2) for the 

y-position of the particles. To find the structure of this singularity, x,t can be expanded 

in a h i t e  Taylor series expansion around the point S: 

x,< = ;X,t??(77’,tS)677’ + q(77,tf)6t ( 3 4  

The precise requirement for this series to be valid is that the appearing derivatives are well- 

defined, i.e. continuous near the point S. The computed x,tqq and u,e profiles at time t s ,  

figiire 1 ,  show no sign of singular behaviour at point S, and prove highly acciirat,e acwrding 

to comparisons for varying mesh size. As an example, table 3 lists the convergencc of the 

values of x,t,,,, and u,t at the point S, along with their 7-derivatives. 

The Taylor series expansion (3a) may be substituted into the continuity eqiiaf ion (2) 

to find the vertical position y of the particles: 
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p = (-2x(77u()f , q = O(1) . (3c1 4 

Here, tlie omission of the subscript comma indicates that the value of the derivative at the 

point S is meant. This paper follows the Eulerian definitions of the constants closely; in 

terms of the notation used in part 1, p corresponds to & P Z ,  and plxt,,,, to Popz. Our 

value for the constant p = 0.71387, table 3,  is in good agreement with the 0.71 of Banks 

& Zaturska (19i9) and the 0.712 of Simpson & Stewartson (1982). 

Figure 2 shows Eulerian velocity profiles in terms of the above scaled coordinate Y 

and the scaled Eulerian velocity gradient 

G = -(6t(ulX , u,, = - . 
X k  

In these velocity profiles, the particles q < qs are found in a wall layer near Y = 0 (see 

(3L)); similarly the particles q > qs are located in a separating layer near pY = 27r. The 

part O < /3Y < 27r comprises most of the Eulerian velocity profile, yet it corresponds to 

only a small vicinity 6q = O(l6tl:) of the point S in the Lagrangian profile. 

The last observation implies that for 0 < PY < 27r1 a Taylor series expansion for 

the Lagrangian solution is applicable. The Lagrangian coordinate q may subsequently be 

eliminated in favor of Y by means of (3b) to h d  asymptotic expressions for the Eulerian 

velocity profiles: 

W - W S  9 ( 5 4  

u,x - -(st(-’ f (1 - C O S ( P Y ) )  . (5b) 

The scaling (3b)  of the variable ’k’ compensates for the rapid expansion of the region 

of particles near q s .  This scaling leads to the apparent thinning of the wall layer and the 

separating layer in the velocity profiles of figure 2: in terms of the original coordinate y, 

these two layers remain of finite thickness. 

To find the separation structure to higher order of approximation, it is more convenient 

to replace the finite Taylor series expansion (3a )  in favor of a formal matched asymptotic 

expansion. The proper inner q-coordinate E near the particle qs can easily be found by 

applying Van Dyke’s (1975) guiding principles: clearly the reason for the non-uni:ormity 

in the continuity equation (2) is the vanishing of x,( at the particle q s .  Removal of this 

non-uniformity requires that the time-dependent term in the Taylor series expansion (3a) is 
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retained in the inner region. On the other hand, the matching with the wall and separating 

layers can only Le done when the second ordw term is ret.ained also. Tliercfore an inner 

coordinate E' will be defined as 

which is also consistent with ( 3 b ) .  An inner dependent variable AY' can be defined as 

Y = ys(t) + -- 2 A Y ' ,  Y E - -  ( & I f  P 16tli 

where ys(t) denotes the vertical distance of the particle 7s from the wall, a distance 

which has been subtracted in order to avoid the appearance of logarithmic terms in the 

Lagrangian inner expansions. 

With the inner scalings known, it is a simple matter to integrate (2) to find the particle 

position: 

AY* = arctan(E') + )6tJ  -PBln(l  + E*2) + +... , ( 7 4  

The Eulerian velocity profiles are found by a Taylor series expansion of the Lagrangian 

profiles, followed by the elimination of the Lagrangian coordinate using (Tu): 

G - $(l + cos 2AY') + l6tliPB sin(2AY')ln( i(1 + cos 2AY')) + . . . , (sa) 

(W * Pwa w w s  + l6tlT- tanAY' . 
X€TS 

The above Eulerian results agree with the inner structure of Banks <'k Zaturska (1979) 

as modified by Simpson R: Stewartson (1982). 

4. The Wall And Separating Layers 

The inner solution derived in the previoiis sectinn can be matchrd lwlow, at E' = -00, 

to a wall layer of particles 77 < m, and above, at E* = 00, t o  a separating layer of particles 

7 > m. In the wall layer, all variables including the particle position y are non-singular 
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since the integral (2) does not involve the singular point 7s. The asymptotic description 

of the wall layer is therefore a Taylor series expansion in time: 

It is not possible to add singular terms of the general form l6tl" In l6tl to this expansion, 

for substitution into the Lagrangian equations (1) and (2) would lead to inconsistencies. 

The Eulerian asymptotic expansion of the wall layer is found by formal elimination of 

q in favor of y: 

The vertical velocity component v is simply the integral of u,, with respect to y. 
Substitution of the expansions (9) into the equations of motion determines the x,;), ( 

u ( ~ )  dn) ,  (n > 0), and the y(-), (n 2 0), in terms of the separation profiles x,( ( 0 )  , u(o)  ,( , and 
,e ' 
w('). However, self-consistency does not pose constraints on the shape of the separation 

profiles themselves. This does not necessarily mean that any separation profile will corre- 

spond to a realistic solution: using the linear heat equation as a model, a velocity profile 

can only correspond to a solution at earlier times if its Fourier transform decays sufficiently I 
I rapidly with the wave number. For this simple model problem, suitable profiles, which are 

arbitrary close to incorrect solutions, can be found by truncating the Fourier transforms 

of the incorrect profiles at large wave numbers. 

To examine whether modification of the velocity profile in the wall layer is indeed 

possible, the computations were repeated for the case in which the sphere is gradually 

brought to a halt in the time interval 4 < t < 4.5(< ts). The choice t = 4 was made 

because a crude preliminary estimate suggested that ts - 4 was too short a time interval 

for diffusion to reach the particle 7s. The velocity change was prescribed as 

1 ( t  - 4.25) 
w(0,t) = , T =  

1 + exp(2T/(1 - TZ)) 0.25 

As can be expected, the results in figure 3 show tha t  t h p  Lagrangian separation profilcs are 

dramatically altered near the wall. Similarly figure 4 shows the difference in the Eulerian 

velocity profiles in the wall layer. However, the separation at particle 77s proceeds exactly as 
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before: the spin of the sphere is brought to a halt but separation continues. At and beyond 

particle S, the Lagrangian velocity profiles wit11 and without spin-down agree within lo-'. 

The asymptotic description of the separating layer proceeds in the same manner as 

for the wall layer, with one distinction: the vertical position y is now singular. The reason 

is evident from the integral (2), which turns singular in passing point S. The resolution 

given by Van Dommelen eC Cowley (1989) is to refer y to a reference position y+ in the 

separating layer. Many definitions are possible for this reference, but a convenient example 

is: 

w(y+, t )  = 0 . 0 5 ~ ( 0 ,  t )  . (12) 

For this definition y+ corresponds to a typical boundary-layer thickness. The continuity 

equation (2) may now be written as: 

where 7 is regular in the separating layer. Thus, when y is replaced by f and v with ? = j ,  
the description of the separating layer becomes of the same form (9), (10) as for the wall 

layer. 

5. The Emergence Of Logarithmic Terms 

In the previous two sections, the asymptotic expansions for the inner region and the 

wall and separating layers have been found. However, the position ys of the particle 

qs in the inner expansion, and the reference position y+ in the separating layer remain 

undetermined. 

To find ys ,  the inner expansion ( i )  can be matched with the wall layer (9), to yield: 

where the coefficients p and B are given in ( ' i b , ~ ) .  

The logarithmic term will lead to a corresponding logarithmic term in the Eulerian 

expansion of the velocity profile (8a), when rewritten in terms of I-: 

A -  
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where '40 is a constant depending on the wall layer profile. 

The pxpansiori nriginallg prnposetl 1)y R F I I I I ~ S  k Znfrirska ( 1 9 i 9 )  was of lllc s a n ~  form 

( l S a ) ,  b u t  they proposed a different coefficient A, without the logarithmic term: 

To verify that there is in fact a missing logarithmic term, a numerical variable approxi- 

mating A was constructed as: 
7r Yz - 3Y1 
2 Y2 -Y1 ' 

a = -  - 

where E'1 and Y2 are the two Y-positions where G = i. For the Banks & Zaturska (1979) 

proposal a - A s z  + O((Stl), while for (15b) 

According to the present more accurate numerical results, the computed values for a do not 

appear to approach the constant given by Banks & Zaturska (1979) (figure 5). If however 

the  logarithmic term in (16b) is first subtracted from the curve, the required approach to 

a constant does become evident. 

Simpson R- Stewartson (1982) were the f i s t  to point out the presence of logarithmic 

terms based on an Eulerian description of the flow. However, our result B = -0.3957 

agrees poorly with the value -0.457 found by Simpson & Stewartson (1982), who obtained 

their value from subtracting two large quantities and fitting of a straight line to the result- 

ing smaller quantity. We submit that our value is independently supported both by the 

apparent convergence of the results in table 3, using the definitions in (Sb,c), and also by 

its apparent success in eliminating the blow up of the curve figure 5. 

143th the inner solution now fully determined by (14), the position of the separating 

layer follows from matching as: 

The 0(1) constant is related to the arbitrariness in the possible definition of the reference 

position J-' and the shape of the wall layer profile. 
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6. The First Separated Stages 

Compared to the Eulerian computations, the most remarkable aspect of the La- 

grangian cornpiitat inn is the absence of any numerical dificulties in the inlegration of 

the momentum equations near the initial separation time ts .  The question arises whether 

the Lagrangian solution continues to exist beyond this time. The numerical evidence in 

tables 1 and 3 and figures 6 through 8 indicates that a formal solution does indeed exist 

for a finite range of times ts < t < tv beyond initial separation. Even at 1025 points 

across the boundary layer, there is no sign of convergence difficulties nor of instability. 

And theoretically, at least the coefficient of the second order viscous derivatives in ( l b )  

and (IC) remains positive, so that the time-like direction remains positive. 

For these reasons were are led to assume that the Lagrangian boundary-layer problem 

has a formal solution beyond initial separation. Whether such a formal solution does have 

a physical meaning is a second and separate question. Certainly at the equatorial plane 

itself, the separation must set up interactive processes which invalidate the further use of 

the original equations (1). 

However, there is a second interpretation for the solution. Van Dommelen (1986) 

wmpi i  tcd the Lagrangian solution to the full two-dimensional boundary layer around the 

sphere. a solution which also appears to remain regular at and beyond the separation time 

ts .  Now, if i t  turns out that the interactive effects remain restricted to a small vicinity 

of the equator,  say to x = l x  + O ( R e - a )  with CY > 0, then the two half boundarj- layers 

x < and x > f a  would continue to describe the correct asymptotic limit away from 

the equator. These two half boundary layers would near x = i7r match with the small 

interactive region. The notion of a limited interaction region seems in line with steady 

descriptions, (Stewartson 1958, Smith & Duck 1977), and the formation of an equatorial 

jet (Dennis R- Ingham 1979, Dennis & Duck 1988). For a limited interaction region, the 

present solution describes the flow in the matching region Re-a << (x - in1 << 1 since it 

is the equatorial limit of the two-dimensional Lagrangian so lu t ion .  

Whether or not these arguments apply, the boundary-layer equations are importtan t 

enough by themselves that their possible behaviour is worth study. Note that a solution 

to the boundary-layer equations may be phpically relevant in some settings even if it, does 

not in apply in other settings (cf. Smith 1982). 

The initial characteristics of the continuity equation beyond time ts were found in pa.rt 
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1 and are such that the singular behaviour in the continuity equation remains restricted 

tn x = 57r. Recaiise of the boiindary conditions ( l g , j )  for x,t,  beyond timp ts the singlr 

zero for x,t must separate into two zeros, at positions which will be denoted as 77] and 

772. Computed values for 771 and 722 are given in table 3 and shown in figure 6. The two 

main boundary layers x < i 7 r  and x > i 7 r  each split into three layers near the equatorial 

plane. The layer of particles 77 < 77] remains close to the wall. The middle layer of particles 

771 < 7 < 772 penetrates relatively far from the wall on account of the strong growth in y 

near 771. The upper layer of particles 77 > 772 penetrates still further from the wall because 

of the additional growth in y near 772. The middle layer further ejects a fmite mass flow 

into the vicinity of the equatorial plane. It may be conjectured that this mass will develop 

into the equatorial jet. 

7. The Settle-Down Of The Lower Stationary Point 

When the time tv  beyond the time ts of first separation is approached, new phenomena 

start to show up. The lower stationary point approaches the wall, figure 6, table 3, and 

the local value of the Lagrangian gradient u,t appears to blow up. Similarly the wall shear 

gradient u,cq rapidly increases, table 1. The "settle-down" of the lower stationary point is 

depicted in figure 6. No significant singular behaviour is evident at the upper stationary 

point, cf. table 3. 

Since an inviscid flow does not turn singular in the Lagrangian coordinate system, it 

is likely that viscous effects are a primary influence near settle-down. A balance of the 

viscous and convective terms in the Lagrangian boundary-layer equations (1) is consistent 

with an inner coordinate 

(18% b )  

Indeed the E-position Eo of the lower stationary point appears to remain non-zero and 

finite near time t v ,  figure i. Since x,t = 1 at the wall, and vanishes a t  the stationary 

point, the appropriate asymptotic expansion should be 

This agrees with figure i ,  where the li-value at the stationary point and the minimum 

value (T-" appear to remain finite. In addition the wall shear gradient ratio lu,tq 1 //lu,tv 13 
2 
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shown figure 8 appears to remain finite. The correspondingly scaled Eu1eria.n variables are: 

The: 

3. 

azimuthal velocity appears to approach a unit value, cf. wlY in table 1 and w1 in table 

Substitution of the inner expansion (18a, b) into the Lagrangian equations ( la)  yields: 

u + iE[T' = x2 ,€ u" - x,tx;t u' + (XI; - x,(x;;)u , (18h) 

U = :EX:( , (18i) 

The equivalent Eulerian problem reads 

GI' - (V + iY )G'  + G2 - G = 0 ,  (W 
I 

where accents now denote derivatives with respect to Y. The Eulerian solution is only 

defined below the stationary point Eo. 

The Runge-Kutta solutions to the inner problems (18h,i) and (18j,k) are shown in 

figure 9. Briefly, the parts 0 5 Y < 00 and 0 5 E < Eo were found from upward shooting, 

and seeking the least singular solution. The part Eo < E < 00 was found from downward 

shooting, starting from a self-consistent asymptotic series truncated at the smallest term. 

Thc resulting values of the Lagrangian derivatives at Eo are listed in table 4. In the vicinity 

of the stationary point Eo,  the solution for x,( may be described to four digits accuracy 

by a diverging Taylor series of the form 

with coefficients given in table 5. 

According to figures 'i and 8, the asymptotic solution of figure 9 is in good agreement 

with the numerical data. In both figures 'i and 8, in order to avoid the difficulty in choosing 

a. precise value for time tv ,  an apparent 

3G' (0) 

time difference (t,,. - t,)* was defined as 

2 
5 

_ -  

, G'(0) = 1.27i980908 . (20) 
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Table 6 shows that  this apparent time difference is in good agreement with the real time 

tfiffcrcncc near  tirne t i  (n-l i i ( .h also proviflcs more sripport fiw f l ie  ap~~Ii i~; i~~i l i1g of I l ic  Ilririge 

Kutta d u t i o n ) .  

Summarizing the results, it would seem that the Lagrangian solution can be continued 

through separation until the lower stationary point reaches the wall. Beyond that time, 

the limiting singular behaviour of the main two boundary layers x < i7r and x > ;7r near 

the equatorial plane can possibly only be found from a complete integration of these layers. 

8. Concluding Remarks 

Van Dommelen R. Cowleg (1989) showed that self-consistent unsteady separation pro- 

cesses can be derived by assuming a smooth Lagrangian solution. To give the strongest 

possible verification that this concept is physically meaningful, in this paper the equatorial 

boundary-lager separation for the impulsively spun sphere was recomputed. With only one 

spatial dimension, this case allows excellent numerical accuracy. Our scheme appears the 

most accurate yet; its separation time is accurate to seven digits before using Richardson 

extrapolation. 

Even when we used over a thousand points across the boundary layer, we could not 

observe any deviations from the smooth Lagrangian solution proposed by Van Dommelen 

,Er Cowley (1989). Derivatives up to third order could easily be determined to five digits 

accuracy, cf. Derivatives of still higher order woufd be difficult to evaluate, 

but they play no significant part in the final separation structure. Moreover, singular 

behaviour of the higher order derivatives would tend to render the evaluation of the lower 

order derivatives more difficult, and we observed no evidence of that. 

table 3. 

Numerical continuation of the boundary-layer solution beyond the time of f i s t  sepa- 

ration showed that the wall vorticity layer disappears in a finite time. Whether a similar 

process occurs for the non-interactive solution of asymmetric two- or three-dimensional 

separation, in which the separation structure is in motion compared to the wall, remains 

unknown . 

During parts of this investigation, the author was supported by the O N R ,  the AFOSR, 

and ICOMP, N A S A  Lewis. 
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Table 1. The wall shear at the equatorial plane of the spinning sphere. The top tabulation 
yields valiies of the wall shear wlY and the hot.tom t.ahrilatinn values for the wall 

1 shear gradient u,,,,. 

Banks Simpson 

Zaturska Stewart son 
129 25 7 51 3 1025 & k mesh 

points 

~ 0.0125 0.00625 0.003125 
time 

: 0.025 
~ step 

ts : 
tv : 

4.575676 4.575643 4.575634 4.575632 4.5758 4.57446 
5.5418 5.5461 5.5473 5.5476 

t = O  
0.25 

1 
2 
3 
4 

4.3 
4.4 
4.5 

4.52 
4.53 
4.56 

t, s 
5. 

5.25 
5.39 
5.47 
5.5 

5.537 

t = O  
0.25 

1 
2 
3 
4 

4.3 
4.4 
4.5 

4.52 
4.54 
4.56 
tS 
5 

5.25 
5.39 
5. .5 

5.53; 

-0.564 1 5 

-0.1441 7 
-0.1 1450 
- 0.10469 
-0.09494 
-0.09300 
-0.09106 
-0.089 13 
-0.08761 
-0.04839 
-0.02632 
-0.01424 
-0.00741 
-0.00527 

-0.5641 8 

-0.55025 
-0.35771 
-0.24414 
-0.14445 
-0.1 1487 
-0.10508 
-0.09537 
-0.09343 
-0.091 50 
-0.08958 
-0.08807 
-0.04859 
-0.02653 
-0 .O 1441 

-0.00463 
-0.00736 

-0.564 19 

-0.35771 
-0.244 16 
-0.14452 
-0.11 496 
-0.1051 8 
-0.09547 
- 0.093 54 
-0.09161 
-0.08969 
-0.08819 
-0.04866 
-0.02661 
-0.01449 
-0.00745 
-U.00472 
-0.001 15 

-0.5641 9 
-1.12666 
-0.55025 
-0.35771 

-0.14453 
-0.1 1498 
-0.10521 
-0.09550 

-0.2441 7 

-0.09357 
-0.091 64 
-0.08971 
-0.08821 
-0.04867 
-0.02663 
-0.01452 
-0.00’748 
-0.00475 
-0.001 18 

-0.5641 90 
-1.12668 
-0.55029 
-0.35773 
-0.2441 8 
-0.1446 
-0.1150 

-0.0955 
-0.0936 

-0.0897 
-0.091 7 

-0.5502 
-0.3577 
-0.2441 
-0.1445 
-0.1 149 
-0.1052 
-0.0954 
-0.0935 
-0.0916 

-0.40990 

-1.40385 
-1.71445 
-1.85470 
-2.03105 
-2.07037 
-2.1 1148 
-2.15450 
-2.18962 
-4.132 
-9.026 
-22.34 
-151 

-0.41000 

-0.4 1855 
-0.6338 7 
-0.89600 
-1.40486 
-1.71522 
-1.85794 

-2.Oi043 
-2.03121 

-2.1 1143 
-2.1 5432 
-2.18927 
-4.110 
-8.903 
-21.63 
-129 

-0.41 002 

-0.63396 
-0.896 18 
- 1.40513 
-1.71543 
-1 .I35810 
-2.03127 
-2.07047 
-2.11 143 
-2.15429 
-2.18920 
-4.104 
-8.873 
-21.35 
-125 

-1231 

-0.41 003 
-0.20527 
-0.41858 
-0.63398 
-0.89622 
-1.40520 
-1.71 549 
-1.85814 
-2.03128 
-2.07048 
-2.11 1-14 
-2.1 5429 
-2.1891 8 
-4.103 
-8.865 
-21.11 
-12 I 
-1171 

-0.41003 
-0.20527 
-0.41855 -0.4186 
-0.63395 -0.6340 
-0.89619 -0.8963 

-1.4058 
-1.7166 
- 1.8594 
-2.0330 
-2.0722 
-2.1 133 
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Table 2. The quantity lutxI& - (ts - t ) - '  according to the present four meshes and 
itccording t o  Simpson R. Stewartson (1982). 

t = 4 
4.3 
4.4 
4.5 

4.52 

129 25 i 51 3 1025 Simpson 

0.025 0.0125 0.00625 0.003125 Stewartson 
X X X X & 

0.035150 0.035127 0.035121 0.035120 . 0.0352 
0.017546 0.017511 0.017501 0.017499 0.02 76 
0.011318 0.01 1243 0.01 1240 0.01 12 
0.00504 0.00491 0.00488 0.00486 0.0045 
0.00381 0.00362 0.00359 0.00359 0.0027 
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Table 3. Stationary point trajectory figure 6 and corresponding Lagrangian quanti ties for 
the foiir increasingly finer meshes of table 1 .  Note that, these valiies do not, 
Hichardson extrapolate; they were bund  from second order interpolation between 
the mesh points. However, at the time ts of f i s t  separation, the stationary point 
happens to fall nearly exactly on a mesh point of the finest two meshes. The four 
values for each quantity are in order of increasing accuracy. 

ts 0.97189 0.672593 -0.369’784 0.689301 -0.04000 -1.1328 
0.97185 0.669262 -0.369789 0.6891 16 -0.04019 -1.1291 
0.97186 0.669249 -0.369i89 0.689064 -0.04026 -1.1276 
0.97188 0.669240 -0.369790 0.689062 -0.04026 -1.1274 

5 

5.25 

5.39 

5.47 

5.5 

5.537 

0.414i8 
0.41507 
0.4 1513 
0.41515 

0.28209 
0.28281 
0.28300 
0.28304 

0.20346 
0.20473 
0.20494 
0.20500 

0.1435 
0.1463 
0.1469 
0.1470 

0.1124 
0.1161 
0.1171 
O.ll i3 
- 
- 

0.0573 
0.0581 

0.92405 
0.92389 
0.9 2 3 8 5 
0.92385 

0.971 93 
0.97167 
0.97159 
0.971 58 

0.98922 
0.98900 
0.98900 
0.98900 

0.99643 
0.99610 
0.99606 
0.99605 

0.99831 
0.9981 1 
0.99805 
0.99804 

- 
- 

0.99978 
0.99977 

-0.46260 
-0.46 1 96 
-0.46180 
-0.46 1 76 

-0.7501 
-0.7454 
-0.7442 
-0.7439 

-1.394 
-1.370 
-1.364 
-1.363 

-3.025 
-2.874 
-2.841 
-2.834 

-5.33 
-4.89 
-4.78 
-4.75 
- 
- 

-24.0 
-23.2 

1.81402 
1.81422 
1.81426 
1.81427 

2.09452 
2.09465 
2.09468 
2.0 9 4 6 9 

2.23830 
2.23844 
2.23846 
2.23846 

2.31751 
2.31 763 
2.31 765 
2.31 766 

2.34681 
2.34686 
2.34686 
2.34687 

- 
- 

2.38259 
2.38259 

0.39848 
0.39838 
0.39837 
0.39837 

0.33781 
0.33776 
0.33774 
0.33774 

0.31096 
0.31089 
0.31088 
0.31088 

0.29725 
0.29720 
0.29i19 
0.29i18 

0.29231 
0.29231 
0.29231 
0.29231 

- 
- 

0.28648 
0.28648 

-0.40753 
-0.40763 
-0.40764 
-0.40764 

-0.41589 
-0.41 597 
-0.41599 
-0.41600 

-0.41926 
-0.41937 
-0.41 933 
-0.41939 

-0.42090 
-0.42101 
-0.42103 
-0.42103 

-0.42152 
-0.42158 
-0.42160 
-0.42161 

- 
- 

-0.42227 
-0.42225 
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Table 4. First few Lagrangia.n derivatives of the solution figure 9 at the stationa.ry point 

Jm* 
d p  

solution x,€ XI€ XI; U U' U" 

E < Eo 0 0.92099 2.015 -0.27450 0.13975 1.02 
E > Eo 0 0.92091 2.02 -0.27450 0.1397'7 1.02 

0.7218 0.5402 0.3953 0.2781 0.2180 0.1661 
0.1503 0.1326 0.1166 0.1030 0.0748 
0.7400 0.5455 0.3970 0.2786 0.2182 0.1661 
0.1503 0.1327 0.1166 0.1030 0.0748 

Table 5. First 30 coefficients C, in the 
solution figure 9. They show 
The tabulated results do not 
c1. 

self-consistent Taylor series expansion (19) to the 
no evidence of a non-zero radius of convergence. 
depend critically on the precise values of Eo and 

0.00e00 -0.92e00 0.10e01 -0.56e00 -0.23e00 0.07e00 0.65e00 0.24e01 
0.1 le02 0.73e02 0.65e03 0.74e04 0.10e06 0.17e07 0.33e08 0.72e09 
0.18el1 0.48e12 0.14e14 0.47e15 0.16el7 0.63e18 0.26e20 O.lle22 
0.52~23 0.25e25 0.13e2f 0.72e28 0.41e30 0.25e32 0.16e34 

Table 6. Comparison between the apparent time from settle-down as defined in (20) and 
the t rue value. (mesh 1025 x 0.003125; tv = 5.54760) 

20 



-1 I I I 
0 2 4 6 - 8  

FIGURE 1. - LAGRANGIAN BOUNDARY-LAYER PROFILES I N  THE EQUA- 
TORIAL PLANE OF THE IMPULSIVELY SPUN SPHERE AT THE TIME 
1 ,  = 4.575632 THAT SEPARATION STARTS. HERE W IS THE A Z I -  
MUTHAL VELOCITY COMPONENT AND U,E THE LAGRANGIAN GRADIENT 
OF THE MERIDIONAL VELOCITY u. FURTHER x,€ IS THE LAGRANGIAN 
GRADIENT OF THE POLAR PARTICLE POSITION x. 
PARTICLE r), = 0 . 9 7 1 8 8  IS INDICATED BY A SOLID DOT. 
CONDITION OF VANISHING X,€ IMPLIES A SINGULAR EULERIAN VE- 
LOCITY PROFILE. 

THE SEPARATION 
THE 

5 - 10 

FIGURE 2. - EULERIAN VELOCITY PROFILES WHEN THE TIME OF FIRST 

Y 
0 

SEPARATION IS APPROACHED. Y IS A SCALED DISTANCE ( 3 b )  FROM 
THE WALL AND G IS THE SCALED EULERIAN VELOCITY GRADIENT u , ~  
DEFINED I N  ( I ta) .  NOTE THAT NEAR SEPARATION MOST OF THE 
EULERIAN VELOCITY PROFILE CORRESPONDS TO ONLY A SMALL V I -  
CINITY OF THE STATIONARY POINT OF THE LAGRANGIAN PROFILE 
FIGURE 1. 
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-1 I 
0 2 4 6 -a 

,€ 
I U 

FIGURE 3 .  - LAGRANGIAN PROFILES WHEN THE SPIN OF THE SPHERE 
IS SMOOTHLY BROUGHT TO A HALT. COMPARISON WITH THE PRE- 
VIOUS LAGRANGIAN SEPARATION PROFILES FIGURE 1 SHOWS THAT 
THE VELOCITY CHANGE GENERATES A SUB-LAYER AT THE WALL. 
HOWEVER, THIS LAYER DOES NOT REACH THE PARTICLE os I N  TIME 
TO HALT THE SEPARATION PROCESS. 

0 

0 

0 5 - 10 
Y 

FIGURE 4. - EULERIAN PROFILES CORRESPONDING TO FIGURE 3.  
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1 

FIGURE 5. - PRESENCE OF HIGHER ORDER LOGARITHMIC TERMS 
I N  THE EXPANSIONS FOR THE IMPULSIVELY SPUN SPHERE. 
ACCORDING TO THE ORIGINAL PROPOSAL OF BANKS AND ZATURSKA 
(1979) ,  THE UPPER CURVE SHOULD LINEARLY APPROACH THE 
VALUE 4.6 INDICATED BY THE DOT. 
SENT RESULTS THE UPPER CURVE CONTAINS A LOGARITHMIC TERM, 
AND ONLY AFTER SUBTRACTION OF THIS TERM THE LOWER CURVE 
APPROACHES A CONSTANT VALUE. SEE TEXT FOR A COMPARISON 
WITH THE WORK OF SIMPSON AND STEWARTSON (1982). 

BUT ACCORDING TO THE PRE- 

5 -  
t t V  

4 

FIGURE 6. - TRAJECTORY OF VANISHING X,[  FOR THE IMPULSIVELY 
SPUN SPHERE I N  THE LAGRANGIAN EQUATORIAL 0, 1-PLANE. I N  
CONTRAST TO THE EULERIAN CASE, THE LAGRANGIAN SOLUTION DOES 
NOT APPEAR TO TERMINATE AT THE TIME t s  THAT SEPARATION STARTS. 

TIONARY POINT ATTACHES ITSELF TO THE WALL, THE LAGRANGIAN SOL- 
UTION TURNS SINGULAR ALSO. 

BUT NEAR THE SETTLE-DOWN TIME t v  = 5 . 5 4 7 6  WHEN THE LOWER STA- 
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FIGURE 9. - PROPOSED ASYMPTOTIC SOLUTION I N  THE V I C I N I T Y  OF SETTLE-DOWN OF THE LOWER 
STATIONARY POINT I N  FIGURE 6. 
LOWER LAGRANGIAN SOLUTION 0 5  E < Eo, 

THE EULERIAN SOLUTION 0 5 Y < 00 IS EQUIVALENT TO THE 
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